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The paper uses digital fabrication as a learning 
environment to demonstrate the importance of 
conceptual understanding of one-variable inequalities. 
These inequalities are hidden within two-variable 
inequalities used to construct geometric shapes the 
borders of which are the graphs of basic functions from 
the secondary mathematics curriculum. As graphing 
skills in the digital era are mostly procedural, an 
emphasis on hidden inequalities as tools for digital 
fabrication of specific regions in the plane and their 
borders connects procedural and conceptual knowledge 
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conditions. The software program used for digital 
fabrication is the Graphing Calculator 4.0 produced by 
Pacific Tech.   
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INTRODUCTION 

An educational paradigm of digital fabrication (Gershenfeld, 2005; Bull, Knezek, & 
Gibson, 2009; Walter-Herrmann & Büching, 2013) has grown out of ubiquitous 
movement of the 1980s to introduce a pedagogy of student-computer interaction into the 
schools as a way of improving teaching and learning of mathematics and science (Papert, 
1980; Noss, 1987; Schwartz & Yerushalmy, 1987; diSessa, 1988; Hoyles & Noss, 1992). 
Conceptually, digital fabrication makes it possible “to explore how to represent a 
functional description of a system in a physical form and likewise to which extent a 
functional description of a physical system can be abstracted” (Dittert & Krannich, 2013, 
p. 173). As Nake (2013) noted, digital fabrication is a space where abstract algorithms 
that guide computational tools and specific productions of art (e.g., a computer aided 
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design) meet. For example, in mathematics, fractals and strange attractors (Gleick, 1987) 
or even more elementary 2-D graphs, all described by abstract mathematical models, are 
examples of digital fabrication.  

This paper continues the authors’ work on bringing digital fabrication as an 
educational paradigm into mathematics education (Abramovich, 2011; Connell & 
Abramovich, 2015). It was motivated by the observation that the process of digital 
fabrication of different geometric shapes formed by the combinations of graphs of the 
basic functions from the secondary mathematics curriculum – polynomial, exponential, 
circular – requires deep conceptual understanding of two-variable inequalities that define 
those shapes. Of particular interest, two-variable inequalities alone may or may not define 
the expected geometric shapes in the plane desired for fabrication via the construction of 
a locus – a set of points determined by a specified condition formulated either through the 
use of an equation or inequality. The process of digital fabrication may involve the 
construction of a connected locus in the plane. It may also involve the construction of the 
locus consisting of several disjoint two-dimensional regions. In the former case, one-
variable inequalities used in defining the range for the independent variable may remain 
hidden within the richer two-variable inequalities that define the locus. In the latter case, 
these inequalities have to be explicitly revealed as they play the critical role in the 
process of digital fabrication in the plane. In both cases, hidden inequalities are necessary 
for the symbolic description of the borders of the shapes. All this requires conceptual 
understanding of algebraic inequalities – a topic that received increased attention in 
secondary mathematics education research within the last decade (Boero & Bazzini, 
2004; Tall, 2004; Abramovich & Ehrlich, 2007; Yerushalmy, 2009; Abramovich, 2011).  

Expectations by the National Council of Teachers of Mathematics (2000) for 
secondary school students include the need to “understand the meaning of … equations, 
inequalities, and relations … using technology in all cases” (p. 296). Because 
mathematical methods allow for “algebra to be applied to geometry and vice versa … 
making visualization a tool for doing and understanding algebra” (Common Core State 
Standards, 2010, p. 74), the meaning of inequalities can be revealed in a geometric 
context of graphing. Nowadays, this context is well supported by technology-enhanced 
visualization based on computer graphing software. In the technological paradigm, 
“competence in solving [inequalities] includes looking ahead for productive 
manipulations and anticipating the nature … of solutions” (ibid, p. 62). That is, graphs of 
the functions related through inequalities when constructed with accuracy that software 
affords may be used for leading the way towards correct solution of the inequalities that 
otherwise would be difficult to solve. The use of software facilitates graphing skills that 
are based on the point-by-point construction of a graph from the procedurally developed 
(x, y)-table. Therefore, the expectation is that such skills, enhanced by a digital tool, 
foster conceptual understanding of algebraic inequalities including both formal (analytic) 
and informal (numeric) methods of finding their solutions. 

In that way, the paper further contributes to the discussion of the interplay between 
procedural skills and conceptual understanding in the technological paradigm 
(Abramovich, 2015; Kadijevich, 2002; Kadijevich & Haapasalo, 2001; Peschek & 
Schneider, 2001). As noted by Kaput (1992), the importance of this discussion is due to 
the fact that “the exercise of procedural knowledge is supplanted by (rather than 
supplemented by) machines” (p. 549). Whereas computers, indeed, free time traditionally 
needed for practicing algorithmic skills, time that students, instead, could (and should) 
use to grow conceptually, these digital tools are conducive to developing links between 
the two types of knowledge. Yet digital fabrication, as its very name suggests, is not 
technology-free. Therefore, to do the fabrication right, one has to appreciate the notion 
that “the use of technology for complicated computation does not eliminate the need for 
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mathematical thinking but rather often raises a different set of mathematical problems” 
(Conference Board of the Mathematical Sciences, 2001, p. 48). Revealing hidden 
inequalities required for sophisticated digital fabrication is one such problem. 

 When technology is used to facilitate inquiry into mathematics, mathematical 
concepts can emerge not only as a result of a computational experiment but also can be 
introduced as tools that structure the experiment (Abramovich, 2014). This approach has 
classic roots going way back to the pre-digital era. In mathematics research, Euler 
emphasized the importance of observations and thought processes that observations 
animate (see Pólya, 1954, p. 3). One can find a similar position in much earlier writings 
by Archimedes (1912), who called thought processes that stem from observations “a 
mechanical method” (p. 13), something that he was using to better understand a problem 
at hand before pursuing its formal solution.  

John Dewey, one of the main forces behind the U.S. educational reform in the first 
part of the 20th century, advocated for an experiential approach to the development of 
knowledge by calling for a pedagogy that motivates reflective inquiry into the subject 
matter studied, a method that blurs the distinction between learning and doing. In turn, 
from this method stems what Dewey (1938) has referred to as collateral learning – a 
phenomenon that does not result from an immediate goal of the curriculum but emerges 
from its hidden domain. That is, a student, at any given moment, within any domain of 
knowledge, learns more than one particular idea. In the domain of mathematics, closely 
related concepts are unintentional discovery (Kantorovitch, 1998) when one can solve 
several, perhaps unrelated, problems at a time, and hidden mathematics curriculum 
(Abramovich & Brouwer, 2006) when one is expected and even encouraged to make 
connections among seemingly disconnected ideas and concepts, thereby motivating 
learning in a larger context that is originally stated. In what follows, the notion of 
collateral learning mapped on the related notions of unintentional discovery and hidden 
mathematics curriculum will serve as a conceptual framework for using digital 
fabrication in the context of teaching secondary mathematics that will provide cognitive 
support for discovering hidden inequalities and using this discovery to advance learning 
of algebraic inequalities through applications.  

A graphing software used by the authors as a tool for digital fabrication in the context 
of this paper is the Graphing Calculator 4.0 produced by Pacific Tech (Avitzur, 2011). 
The tool allows for graphing relations from any two-variable equations and inequalities. 
The notion of hidden inequalities introduced in this paper will illustrate how 
“mathematical planning and theoretical insights may be needed to structure efficient 
computation” (Conference Board of the Mathematical Sciences, 2001, p. 48). Put another 
way, hidden inequalities can support “the recognition of a difference between 
‘technological literacy’ (a general set of skills and intellectual dispositions for all 
citizens) and ‘technical competence’ (in-depth knowledge that professional engineers and 
scientists need to know to perform their work” (Blikstein, 2013, p. 205). 

DIGITAL FABRICATION USING TRANSITIVE INFERENCE 

As the first example, consider the graphs of the functions f (x) = x2  and g(x) = x  
shown in Figure 1. The graphs form a parabolic segment Ω = {(x, y) | y > x2 , y < x}  – a 
connected region located above the parabola and below the straight line in the (x, y)- 
plane.  One should note that the formal mathematical definition of Ω  does not include 
information about the variation of x along the x-axis, that is, the x-range of Ω . 
Nonetheless, this definition of Ω  is complete because Ω consists of a single, connected 
region and seemingly missing information regarding the variation of x within the 
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parabolic segment Ω  formed by the graphs of f(x) and g(x) is hidden within the 
(simultaneous) inequalities   

                                   y > x2 , y < x   (1) 
used to digitally fabricate Ω  (Figure 2). To reveal hidden inequalities that define the x-
range within the parabolic segment Ω  note that inequalities (1) imply the inequality 
x2 < x , which, through the process of cancelling out x as the common factor of its both 
sides, taking into account the sign of x, is equivalent to the pair of consistent inequalities
x > 0, x <1  or inconsistent inequalities x < 0, x >1 , whence  

                             0 < x <1  .   (2) 

It is in this sense that one can say that inequalities (2) are hidden within inequalities (1). 
Inequalities (2), however, are not needed for the construction of Ω in a sense that 

they do not have to be explicitly communicated to a graphing facility capable of graphing 
relations from two-variable inequalities. Therefore, if one graphs simultaneously 
inequalities (1) and (2), the act of adding (2) to (1) is of no consequence. That is, if one is 
tasked with the transition from visual to symbolic, that is, with describing Ω  in terms of 
x and y, inequalities (2) is extraneous information.  

 
Figure 1. The parabolic segment formed by two graphs. 

  
Put another way, the graphing tool appears to be capable of making a transitive 

inference (Nunes, 1992) by recognizing that if a > b  and b > c , then a > c . That is, the 
inference a > c  is hidden within the assumption formed by the inequalities a > b  and 
b > c . However, if the inequality b > c  is replaced by b < c , the relationship between a 
and c becomes undetermined (which is significantly different from being merely hidden) 
and, therefore, additional information is needed to make an inference. For example, from 
the inequalities 5 > -3 and -3 > -5 one can make the inference 5 > -5; however, the 
inequalities 5 > -3 and -3 < 6 may not be used to relate 5 and 6 using a transitive 
reference. 

In that way, the use of the Graphing Calculator does “require the user [of the tool] to 
think conceptually before a procedure is used” (Kadijevich, 2002, p. 72). Therefore, the 
tool facilitates the development of links between procedural skills and conceptual 
understanding. The pedagogy of linking two types of knowledge, procedural and 
conceptual, is an important topic in mathematics education, especially in the digital era. 
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Figure 2. Digitally fabricated parabolic segment Ω . 

 

DIGITAL FABRICATION OF BORDERS 
LACKS TRANSITIVE INFERENCE 

Why are we talking about hidden inequalities in the first place? Do they have any use 
in digital fabrication? To answer these questions, consider digital fabrication of the 
borders (straight and curvilinear) of the parabolic segment Ω  (Figure 2). The borders are 
not defined by the graphs of f(x) and g(x) as they represent only specific parts of the 
graphs. Therefore, unlike the case of Ω  which is located between the graphs, the borders 
of Ω are defined independently by the corresponding parts of these graphs. Whereas 
inequalities can be used to construct lines (loci) of non-zero measure to ensure their 
visual thickness, the description of specific parts of the graphs would require an 
independent set of inequalities that explicitly describe the corresponding x-range. In other 
words, the graphing tool is unable to make a transitive inference about an x-range from 
the inequalities that define the lines of non-zero measure to which the borders belong.  

For example, the straight border of Ω  can become ε -thick by defining it as a set of 
points within which | y − x | < ε , where ε  is a sufficiently small positive number.  That 
is, the two-variable inequalities  

                                         −ε < y − x < ε                                 (3) 

define the set of points (x, y) where the difference between y and x belongs to the 
bandwidth [−ε ,ε ] . Likewise, the curvilinear border of Ω  can be defined as a set of 
points (x, y) within which | y − x2 | < ε . That is, the inequalities  

                                       −ε < y − x2 < ε                                   (4) 

define a set of points (x, y) where the difference between y and x2 belongs to the 
bandwidth [−ε ,ε ] . One can see that inequalities (3) and (4) are mutually independent and 
define an ε -thick “cannula” through which each of the two graphs passes.   

Graphing simultaneously inequalities (3) and (4) can mark the points (0, 0) and (1, 1), 
which can be interpreted as hidden endpoints where the borders intersect. Alternatively, 
ε -thick points common to the two borders can be fabricated by graphing the inequalities 
| x −1|2 + | y −1|2< 0.05  and x2 + y2 < 0.05  (Figure 3). That is, for the fabrication of the 
borders of the parabolic segment Ω one has to introduce hidden inequality (2) and graph 
concurrently (3)-(2) and (4)-(2) as shown in Figure 4.   
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Figure 3. Graphing the endpoints of the borders of Ω . 

 
Figure 4. Using hidden inequalities (2) in constructing the borders of Ω . 

A NEED FOR HUMAN-COMPUTER INTERACTION 

Another example demonstrating the interplay between hidden inequalities and the 
digital fabrication of two-dimensional locus and their borders deals with the graphs of the 
functions y = x3  and y = x. Consider the set of points in the (x, y)-plane defined as 
follows:  

Ω1 = {(x, y) | y > x
3, y < x} . 

Once again, the definition of Ω1does not include explicit information about variation 
of the variable x along the x-axis. However, this time, graphing simultaneously the 
inequalities  

y > x3, y < x                                      (5) 
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fabricates two regions: one, bounded, in the first quadrant, and another, unbounded, in the 
third quadrant (Figure 5).  

 
 

 
Figure 5. Digital fabrication using inequalities (5) only. 

 
The easiest way to distinguish between the two regions is to note that in the first and 

the third quadrants we have, respectively, x > 0 and x < 0. So, if one of the last two 
inequalities has been added to inequalities (5), the graphing would yield one of the 
regions only. Is the inequality x > 0 (or x < 0) hidden within inequalities (5)? It follows 
from (5) that x3 < x  or x(x −1)(x +1) < 0  whence, due to the sign-chart method (Dobbs 
& Peterson, 1991) 

x < -1 or 0 < x < 1.                                  (6) 

That is, neither the inequality x > 0 nor the inequality x < 0 is hidden within 
inequalities (5). At the same time, when adding either x < 1 or x < -1 to, respectively, the 
system of inequalities y > x3, y < x, x > 0  or y > x3, y < x, x < −1 , the corresponding 
addition is of no consequence for the outcome of digital fabrication. However, just as in 
the previous example with parabola, hidden inequalities (6) are critical for the 
construction of the borders of Ω1 . Indeed, graphing the systems −ε < y − x < ε , 0 < x <1  
and −ε < x3 − y < ε , 0 < x <1  (for a sufficiently small value of ε ) digitally fabricates 
these borders. That is, once again, hidden inequalities are needed for the construction of 
the borders of two-dimensional locus. 

Making an appropriate decision regarding these conditions requires human judgment, 
grounded in the needs of the desired outcome.  Once it is provided with appropriate 
instructions, the computer produces the desired outcome easily.  Determining what the 
desired outcome is, however, is beyond the ability of the computer and requires human 
interaction as informed by deep conceptual awareness of the language of mathematics. 

NECESSARY AND SUFFICIENT CONDITIONS AS COLLATERAL 
LEARNING 

When exploring pedagogy of collateral learning, Dewey (1938) noted, “the greatest 
of all pedagogical fallacies is the notion that a person learns only the particular thing he is 
studying at the time” (p. 49). The topic of hidden inequalities provides a collateral 
opportunity for secondary school students and their future teachers alike to learn about 
necessary and sufficient conditions – one of the main reasoning instruments in 
mathematics. It is said that condition A is sufficient for condition B if condition A 
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implies condition B (i.e., A⇒ B ).  Also, it is said that condition A is necessary for 
condition B if B implies A (i.e., B⇒ A ). That is, condition A is necessary and sufficient 
for condition B if B implies A and vice versa (i.e., A⇔ B ).  

For example, in order for the inequality x < −1  hold true (condition A) it is necessary 
that x < 0  (condition B). One can see that A⇒ B . However, condition B is not sufficient 
for condition A as a negative number may be still be greater than -1. At the same time, 
the inequality x +1< 0  (new condition B) is necessary and sufficient for x to be smaller 
than -1. Indeed, the inequality x +1< 0  implies x < −1  (condition A). That is, because 
B⇒ A , condition B is necessary for condition A. By the same token, the inequality 
x < −1  implies x +1< 0 . That is, because A⇒ B , condition B is sufficient for A.  
Therefore, the inequality x +1< 0  is necessary and sufficient for the inequality x < −1 . 

CAN HIDDEN INEQUALITIES BE NECESSARY  
AND SUFFICIENT FOR DIGITAL FABRICATION? 

Inequalities (6) are hidden within inequalities (5). But the critical question remains: 
Which one is necessary, which one is sufficient, and which one is necessary and 
sufficient for the digital fabrication of one of the shaded regions shown in Figure 6? The 
inequality x < -1 is necessary for the fabrication of the far-left region shown in Figure 6. 
At the same time, x < -1 is also sufficient for this fabrication. That is, the inequality x + 1 
< 0 is necessary and sufficient for the construction of the non-bounded part of Ω1 . At the 
same time, the inequalities 0 < x <1  are sufficient for the fabrication of the bounded part 
of Ω1 . Yet they are not necessary for that fabrication because, unlike 0 < x <1 , the 
inequality x > 0 is both necessary and sufficient for the fabrication when added to 
inequalities (5). One can note that only the inequality x < 1 was hidden in inequalities (5) 
and thus it was not necessary to be added to (5) for the fabrication of the bounded part of 
Ω1 . It appears that hidden inequalities are either unnecessary for digital fabrication of 
regions formed by the graphs of functions or they are neither necessary nor sufficient for 
the digital fabrication. 

DIGITAL FABRICATION WITH EXPONENTIAL  
AND LOGARITHMIC FUNCTIONS 

Consider the system of inequalities 

y > 2|x|, y < log(100 | x |)                        (7) 

where the notation log stands for the base-ten logarithm. Whereas adding to (not hidden) 
inequalities (7) either x > 0 or x < 0 results in one of the two connected loci, for the 
construction of the borders hidden inequalities are needed. The locus of system (7) is 
shown in Figure 6. Similar to Figure 5, the locus comprises two disjoint regions and if 
one needs to digitally fabricate one of the regions, one has to use hidden inequalities that 
define the regions separately. This time, analytic solution of the inequality 
2|x| < log(100 | x |)  cannot be found, only parts of the hidden inequalities can be found as 
both sides turn into two when x = 1 because of the coefficient 100, which is a special 
case. Nonetheless, the missing boundaries can be found graphically by graphing the 
equation 2|x| = log(100 | x |) . We have x ≈ ± 0.122673 . Graphing the systems of 
inequalities | y − 2|x| | < ε , 0.122673 < | x | <1  and | y − log(100 | x |) | < ε , 0.122673 < | x | <1  
for a sufficiently small ε  yields the digital fabrication (Figure 7, ε = 0.01 ) of the border 
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of locus defined by inequalities (7) within which the inequalities 0.122673 < | x | <1  are 
hidden and can be revealed through cursor pointing. 

 
Figure 6. Revealing hidden inequalities by solving an equation graphically. 

 

 
Figure 7. Fabricating borders. 

DIGITAL FABRICATION WITH CIRCULAR FUNCTIONS 

Digital fabrication with circular functions differs from the cases considered above in 
part because of the periodicity of the functions. Indeed, if the functions y = Asin x  and y 
= kx are used in the formation of a two-dimensional locus, then the number of connected 
regions that comprise the locus depends on the values of the amplitude A and the slope k. 
Consider, for example, the functions y = sin x  and y = kx. The locus of the relation 
kx = sin x  constructed in the (x, k) plane (Figure 8) can be used to determine positive 
values of k that produce a specified number of connected loci defined by the system of 
inequalities  

y < sin x, y > kx, k > 0, k <1 .                      (8) 

Note that when k ≥ 1, the line y = kx has the origin as the only point in common with the 
graph of the function y = sin x . 
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In this context, one can be asked to digitally fabricate the borders of the region 
defined by inequalities (8) under the condition that in the first quadrant the straight line y 
= kx is tangent to the graph of the function y = sin x , 0 < k < 1, as shown in Figure 9. The 
case of tangency shown in Figure 9 can be defined as follows: in the (x, k)-plane, the line 
k = k0 , k0 > 0 , has exactly two points in common with the locus shown in Figure 8, one 

of which is the point of tangency. This time, setting f (x) = sin x
x

 , the point of tangency 

has to be defined analytically as one of the solutions of the equation  ′f (x) = 0 . 
Differentiation yields xcos x = sin x  whence, taking into account the sketch of Figure 8, 
x ≈ 7.72525 . In order to find the x-coordinate of the first point where the line k = k0  
crosses the locus as shown in Figure 8, one has to solve the equation 
sin x
x

= cos(7.72525)  whence x ≈ 2.77706 . Now, by graphing the borders of the locus 

defined by inequalities (8) where k = cos(7.72525) , through adding the inequalities 
0 < x < 2.77706  (where right-hand side inequality was hidden) one gets the connected 
region shown in Figure 10.  

The curvilinear and the straight borders are defined, respectively, by the inequalities 
| y − sin x | < ε , x > 0, x < 2.77706 and | y − cos(7.72525) ⋅ x | < ε , x > 0, x < 2.77706  
for sufficiently small value of ε (in Figure 10 we have ε = 0.01 ). This is another way of 
revealing hidden inequalities in the case of a circular function. It shows that hidden 
inequalities emerge from the process of differentiation followed by equation solving by 
taking into account specific relations between the functions involved. Other examples of 
using circular functions in digital fabrication may be considered.  

 
Figure 8. Locus as support system in locating hidden inequalities. 

 

 
Figure 9. The line y = kx is both secant and tangent to the graph of y = sin x. 
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Figure 10. Completing digital fabrication using a hidden inequality. 

CONCLUSION 

The paper introduced the notion of hidden inequalities that one needs to consider in 
the context of digital fabrication of different two-dimensional loci when using computer-
graphing software. Such tool-oriented perspective on an important concept of secondary 
school mathematics curriculum can be used to focus on some of the conceptual 
requirements necessary to solve practical problems in engineering and science. This not 
only provides an important link to related STEM areas but it also brings out the need for 
a greater degree of both content knowledge and the appreciation of metacognitive 
monitoring.  

As the examples in the paper served to illustrate, digital fabrication, utilizing the 
basic functions of traditional school curriculum in an applied problem-solving context, 
requires much deeper conceptual understanding of mathematics than what one might 
initially expect.  Recognizing the didactic value of hidden inequalities is an example of 
how procedural knowledge – construction of graphs – can be connected to conceptual 
knowledge of algebra through digital fabrication. For example, when the locus needed for 
digital fabrication consists of several disjoint regions in the plane, one-variable 
inequalities used in defining the range for the independent variable must be explicitly set 
out.  

When students experience mathematics in the context of solving problems with an 
engineering/science focus, as modeled in the paper, they must “bring two complimentary 
abilities to bear on problems involving quantitative relationships: the ability to 
decontextualize … and the ability to contextualize” (Common Core State Standards, 
2010, p. 6). Even if the specific example might differ, this observation serves to 
underscore the importance of incorporating elements of engineering/science education 
into the teacher education curriculum.  Indeed, one can be reminded in the collateral 
learning format that circular (alternatively, trigonometric) functions “proved to be 
admirably suited for the study of sound, electricity, radio, and a host of other oscillatory 
phenomena” (Kline, 1985, p. 417). Teacher candidates cannot be expected to master the 
collateral learning pedagogy they neither understand nor have experienced. In order to 
enable meaningful introduction of schoolchildren to ideas that develop core STEM 
abilities (Bull, Knezek, & Gibson, 2009), practicing teachers must have experienced 
those ideas at some level personally. 

Digital fabrication, being a social movement of turning ideas into things (Blikstein, 
2013), is also a natural problem space to develop such experiences.  As shown in the 
paper, when depending on a graphing context, hidden inequalities may or may not affect 
the outcome of digital fabrication. With this in mind, the paper demonstrated different 
methods of revealing hidden inequalities. These included purely analytical methods, like 
in the case of quadratic and cubic functions, and a combination of analytical and 
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numerical methods, like in the case of logarithmic, exponential, and trigonometric 
functions.  

Through these methods, using problems of digital fabrication as context, teacher 
candidates can experience problems that are rich in both mathematical and engineering 
sophistication.  Furthermore, these problem situations can then be used by a mathematics 
education professor as a mechanism to develop links between procedural skills of using 
technology in constructing graphs of functions, the factual graphs knowledge related to 
identifying the loci necessary for the fabrications to be created, and the conceptual 
knowledge required for the fabrication of the specific parts of these graphs and their 
intersections. Developing such links requires robust understanding of algebraic 
inequalities and an ongoing mindful interaction between the human and the computer. 

The very notion that “almost anything” (Gershenfeld, 2005, p. ix) can be fabricated 
in the digital context by using mathematical concepts as tools in computing applications 
could be a true cognitive motivation for the learners of secondary mathematics. While it 
appears that inequalities are the primary mathematical tools of digital fabrication at the 
secondary level, the methods of defining the boundaries of shapes to be fabricated, as has 
been demonstrated in the paper, may be different in a sense that each new method reveals 
a new hidden mathematical concept and/or structure. Therefore, further research on using 
digital fabrication as a learning environment conducive to revealing other elements of 
hidden mathematics curriculum is worth pursuing. Through this kind of research 
mathematics educators can create new collateral learning opportunities for unintentional 
discoveries by “mathematically proficient students” (Common Core State Standards, 
2010).  
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